Code: 20CS3302, 20IT3303

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

OBJECT ORIENTED PROGRAMMING THROUGH C++ (Common for CSE, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

program to show the concept of making the outside member function as inline. b) Illustrate the following concepts with simple L3 CO3 7 M examples i) default arguments ii) const arguments OR 2 a) List the principles of function overloading. L2 CO3 7 M Interpret the advantages of function overloading with example program.				BL	СО	Max. Marks
program to show the concept of making the outside member function as inline. b) Illustrate the following concepts with simple examples i) default arguments ii) const arguments OR 2 a) List the principles of function overloading. Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation		I.	UNIT-I			
outside member function as inline. b) Illustrate the following concepts with simple examples i) default arguments ii) const arguments OR 2 a) List the principles of function overloading. Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation	1	a)	Describe the use of inline function. Write a	L2	CO3	7 M
b) Illustrate the following concepts with simple examples i) default arguments ii) const arguments OR 2 a) List the principles of function overloading. Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation CO3 7 M CO3 7 M L2 CO3 7 M TM TM TM TM TM TM TM TM TM			program to show the concept of making the			
examples i) default arguments ii) const arguments OR 2 a) List the principles of function overloading. L2 CO3 7 M Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation			outside member function as inline.			
i) default arguments ii) const arguments OR 2 a) List the principles of function overloading. Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation		b)	Illustrate the following concepts with simple	L3	CO3	7 M
OR 2 a) List the principles of function overloading. Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation			examples			
2 a) List the principles of function overloading. Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation			i) default arguments ii) const arguments			
Interpret the advantages of function overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation			OR			
overloading with example program. b) Explain the following i. Data abstraction ii. Encapsulation	2	a)	List the principles of function overloading.	L2	CO3	7 M
b) Explain the following i. Data abstraction ii. Encapsulation			Interpret the advantages of function			
i. Data abstraction ii. Encapsulation			overloading with example program.			
ii. Encapsulation		b)	Explain the following	L2	CO1	7 M
			i. Data abstraction			
iii. Inheritance			ii. Encapsulation			
			iii. Inheritance			

UNIT-II							
3	a)	Construct a class complex with data	L3	CO2	7 M		
		members real and imaginary. The member					
		functions are read and display. Create a non					
		member function sum to add two complex					
		numbers. Show that function sum can					
		access the private members of complex					
		using friend concept.					
	b)	Construct a class matrix with data member	L3	CO2	7 M		
		m which is a two dimensional array. Add					
		the member functions read(), display() and					
		operator function + to add two matrices.					
		Write appropriate main() to add two					
		matrices.					
	OR						
4	a)	"Only one copy of the static variable is	L3	CO2	7 M		
		created for an entire class and is shared by					
		all the objects of that class, no matter how					
		many objects are created". Justify this					
		statement with example program.					
	b)	Construct a class String with data member	L3	CO2	7 M		
		str which is an array of characters. The					
		member functions are read(), display() and					
		operator function + to concatenate the two					
		strings. Write appropriate main().					
		UNIT-III					
5	a)	Construct a class employee with data	L3	CO2	7 M		
		members empno and name. Create another			, 141		
		classes typist, manager to illustrate the					

		hierarchical inheritance. Read and print the			
		details of employee using lower level class			
		objects.			
	b)	Construct a class student with data members	L3	CO2	7 M
		rollno, name. The member functions are			
		read and display.			
		Construct another class marks derived from			
		student with data members m1, m2, m3 and			
		member functions read_marks and			
		display_marks.			
		Create another class result derived from			
		marks with data member total and member			
		function calculate to find the total and			
		average of a student. Print all the details of			
		student.			
		OR			
6	a)	Construct a class side with data member	L3	CO2	7 M
		length and member functions read and			
		display.			
		Create another class square inherits from			
		side with member function area to find the			
		area of square.			
		Create another class cube inherits from side			
		with member function volume to find the			
		volume of cube.			
	b)	Differentiate virtual function and pure	L3	CO3	7 M
		virtual function. Illustrate with an example.			

		UNIT-IV			
7	a)	Develop a program to copy the contents of one file to another	L3	CO2	7 M
	b)	Prepare a user defined exception to catch an exception when the age is less than 18 and	L3	CO4	7 M
		display "You are not eligible for voting"			
		otherwise print "Welcome to caste the vote".			
		OR			
8	a)	Develop a program to illustrate the concept of reading and writing the class objects using file concept.	L3	CO2	7 M
	b)	Write short notes on exception specification. Construct a program to create a function which may raise only integer and float type exceptions.	L3	CO4	7 M
		UNIT-V			
9	a)	Develop a function template sort to sort the given numbers of integer or float type.	L3	CO4	7 M
	b)	Develop a class calculate to perform the operation addition, subtraction, multiplication and division on integer or float type of data.	L3	CO4	7 M
		OR			
10	a)	Interpret the use of list in STL. Construct a program to transverse list using iterator.	L3	CO4	7 M
	b)	Develop a program to insert an element into the vector object. Use member function and iterator to traverse.	L3	CO4	7 M